
Immersive Software Archaeology:
Collaborative Exploration and Note Taking in Virtual Reality

Adrian Hoff
adho@itu.dk

IT University of Copenhagen, Denmark

Mircea Lungu
mlun@itu.dk

IT University of Copenhagen, Denmark

Christoph Seidl
chse@itu.dk

IT University of Copenhagen, Denmark

Michele Lanza
michele.lanza@usi.ch

Software Institute @ USI Lugano, Switzerland

ABSTRACT
Understanding software systems is a vital task, often undertaken
by teams of engineers, for the development and maintenance of
systems. Collaborative software visualization tools are essential
in this context, yet they are limited. Existing tools, particularly
in virtual reality, allow exploration but lack the crucial feature of
note-taking, which is a significant limitation.

We present Immersive Software Archaeology (ISA), a virtual re-
ality tool that enables engineering teams to collaboratively explore
and comprehend software systems. Unique to ISA, it facilitates note-
taking during exploration with virtual multimedia whiteboards that
support freehand diagramming, audio recordings, and VR screen-
shots. Notes taken on these whiteboards are synchronized with an
Integrated Development Environment (IDE), providing easy access
to the results of a VR exploration while performing changes to the
system’s source code.

Video Demonstration—https://youtu.be/32EIpf4V3b4

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools;
Maintaining software; Software reverse engineering.

KEYWORDS
Software Visualization, Software Comprehension, Collaborative
Software Engineering, Virtual Reality

ACM Reference Format:
Adrian Hoff, Mircea Lungu, Christoph Seidl, and Michele Lanza. 2024. Im-
mersive Software Archaeology: Collaborative Exploration and Note Taking
in Virtual Reality. In 32nd IEEE/ACM International Conference on Program
Comprehension (ICPC ’24), April 15–16, 2024, Lisbon, Portugal. ACM, New
York, NY, USA, 5 pages. https://doi.org/10.1145/3643916.3644438

ICPC ’24, April 15–16, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in 32nd IEEE/ACM
International Conference on Program Comprehension (ICPC ’24), April 15–16, 2024, Lisbon,
Portugal, https://doi.org/10.1145/3643916.3644438.

1 INTRODUCTION AND RELATEDWORK
Exploring and comprehending an unfamiliar software system, e.g.,
for re-engineering a legacy system, is a complex yet crucial task
typically performed by teams of engineers [19, 23]. When done by
reading through source code, the process is hampered the size and
complexity of a system. Software visualization can be beneficial in
this scenario: by using visual metaphors to represent the structure,
behavior, or evolution of a system, it provides software engineers
with a comprehensive overview [2, 6].

Software visualizations vary in their metaphor (e.g., graphs [7,
14] or information cities [11, 16, 21]), dimensionality (2D [15, 17]
or 3D), and – for 3D visualizations – display medium (standard
screen [20, 22, 24] or virtual/augmented reality (VR/AR) [4, 5, 9, 18]).

Despite the availability of many software visualization tools,
there is a scarcity of collaborative options, especially for remote
settings. VR is a preferred medium for such settings [12, 13], but a
major drawback of existing VR visualizations is their lack of support
for note-taking during exploration, risking the loss of insights.

We introduce Immersive Software Archaeology (ISA), a collabo-
rative VR software visualization tool. Based on automated system
analysis, ISA allows software engineering teams to collaboratively
explore a system’s structure in immersive VR using an interactive
visualization that is synchronized over the internet. Engineers can
record their thoughts and insights on collaborative multimedia
whiteboards during their VR exploration - which is not possible
with existing VR tools. Post-exploration, these notes are accessible
in the Integrated Development Environment (IDE) Eclipse, aiding
in the implementation of changes to the system’s source code.

2 COLLABORATIVE SOFTWARE
EXPLORATION IN VR

We present the collaborative virtual reality software visualization
tool Immersive Software Archaeology (ISA) in its current version
2.11. ISA is comprised of two main components: a model server
that integrates with the widely used open-source development
environment Eclipse, and a VR visualization client. We discuss how
users interact with both components, and follow with an overview
of the relevant aspects of its architecture.

2.1 Usage from a User’s Point of view
Figure 1 offers an overview of ISA, illustrated through screenshots
captured from the perspective of a user. The process of using ISA

1https://gitlab.com/immersive-software-archaeology

https://orcid.org/0000-0002-5254-6246
https://orcid.org/0000-0003-3944-5261
https://orcid.org/0000-0003-4539-8297
https://orcid.org/0000-0003-4391-0197
https://youtu.be/32EIpf4V3b4
https://doi.org/10.1145/3643916.3644438
https://doi.org/10.1145/3643916.3644438
https://gitlab.com/immersive-software-archaeology

ICPC ’24, April 15–16, 2024, Lisbon, Portugal Adrian Hoff, Mircea Lungu, Christoph Seidl, and Michele Lanza

Eclipse

VR Clients

Ex
pl

or
in

g
M

ul
tim

ed
ia

 N
ot

es
M

od
el

 G
en

er
at

io
n

R
ea

di
ng

 N
ot

es

unrestricted
methods

encapsulated
methods

 pinning elements
on whiteboard

freehand sketching recording
audio

screenshots

relationship graphsclass-level structure source
code

folder structure

attributes

tipping

class

base

 pinning audio
 & screenshots

b

c

d e

f

g

h
i

j k

m

l

on

a

Figure 1: Overview of ISA’s collaborative VR software exploration and note taking approach from a user’s point of view.

begins within Eclipse, where users initiate an automated procedure
to generate the information necessary to visualize a selected subject
system (a and b). Once that is completed, multiple users are
able to jointly explore the subject system in a collaborative VR
visualization and record multimedia notes about their observations
and insights (c to j). Finally, notes taken in VR are accessible in
Eclipse, allowing users to review them while making modifications
to the source code of the system under study, as indicated in n , o .

AutomatedModel Generation in Eclipse. Users start ISA’s auto-
mated model generation process via an entry in the Eclipse project
explorer’s context menu a . This process involves multiple steps
(see Section 2.2), for which users choose between alternative imple-
mentations depending on the ISA Eclipse plugins installed b .

Upon completion of the model generation process, the results are
persisted and users make them available for VR visualization clients
by launching ISA’s model server, either through a confirmation

dialog that pops up after the model generation process or by using
a control panel view in the Eclipse UI.

Collaborative Exploration in Virtual Reality. Once the ISA
Eclipse model server is reachable, multiple users can connect to it
via a local network or the internet using the ISA VR client running
on a head-mounted VR device. Once connected, they have the
option to select and load a system from the range of those analyzed
in the connected ISA Eclipse model server.

After the loading phase completes, users enter in a real-time, syn-
chronized visualization environment of the selected system where
they can view the virtual representations of fellow collaborators, ob-
serving each other’s interactions with elements of the visualization
as detailed in the subsequent sections.

Folder Spheres. ISA visualizes the folder-level structure of a sub-
ject system in form of nested semi-transparent folder spheres with
different colors. These folder spheres are initially in a closed state,

Immersive Software Archaeology: Collaborative Exploration and Note Taking in Virtual Reality ICPC ’24, April 15–16, 2024, Lisbon, Portugal

as shown in c . Users can interact with them by tapping on them
to open and reveal the contents within, compare c and d . This
interaction promotes a top-down approach to exploring the sys-
tem’s structure [3]. Additionally, ISA enables users to utilize hand
gestures to manipulate the scale of the visualization and to move it
within the virtual space, providing an additional form of navigation
besides the standard click-and-point VR teleportation mechanisms.

Class Cylinders. Positioned within folder spheres, ISA visualizes
the class-level elements of a subject system as stacks of cylinders e
consisting of four parts: (1) a base cylinder colored according to the
containing folder sphere’s color, (2) cylinders representing methods
without access restrictions (e.g., public in Java), (3) cylinders repre-
senting encapsulated methods (e.g., private, protected, or package
visible in Java), and (4) spikes originating from the base cylinder
represent attributes.

The height of method cylinders is proportional to the number
of expressions contained in the represented method while their
radius is proportional to its cognitive complexity as measured by
the metric proposed by Campbell e [1]. Attribute spikes vary in
length depending on whether they are encapsulated (short spike)
or accessible without restrictions (long spike).

With the above, ISA encodes a summary of structural class met-
rics into the shape of class cylinders and their constituents. Users
can visually comprehend these already before reading code. Due
to their cylindrical shape and symmetrical layout, class cylinders’
outline is independent of the viewing angle, an aspect particularly
relevant in a collaborative setting.

Relationship Edges. In ISA, tapping on the visual representations
of folders, classes, methods, or attributes enables users to access a
user interface that provides detailed information about the tapped
element. This user interface is interactive and can be repositioned
by the users as needed. All interactions with it are synchronized in
real time among all users, enhancing the collaborative experience.

Figure 1 f depicts the user interface for a selected method. Its
upper section features controls for a relationship visualization that
represents references to or from a software element (e.g., a method)
in the subject system’s source code. It distinguishes between differ-
ent types of references into type references, method calls, and field
accesses. Users can dynamically display or hide these references for
a selected element. For example, g shows type references originat-
ing from a selected class. The relationship visualization is available
for all types of elements, including folders, where it aggregates
references coming from or going to their constituent elements.

Source Code. When opening the user interface for an element
containing direct source code (i.e., a class-level element, method, or
attribute), it displays a scrollable view of the source code at its lower
section, as shown in f . In combination, the relationship graph
and code view provide a comprehensive and interactive means for
users to explore and understand the code details and structural
relationships between them in a subject system.

Collaborative Note Taking in Virtual Reality. Users can spawn
virtual whiteboards to take notes during VR exploration sessions.
These whiteboards allow for pinning elements from the visualiza-
tion, creating freehand sketched diagrams, and attaching audio
recordings as well as screenshots taken in VR.

Pinning Software Elements. Users can grab folder spheres and
class cylinders from the visualization and pin them on a virtual
whiteboard via a respective hand gesture (indicated in h). When
an element is pinned to the whiteboard, a corresponding pin ap-
pears. Users can manipulate these pins by moving them around or
accessing an interface with additional information, such as a list of
referenced classes.

This user interface enables to replace pins representing folders
by pins for class-level elements and sub-folders they contain, ar-
ranged in a circular layout. This feature allows users to navigate
the hierarchical structure of the software system.

Relationships between Pinned Elements. If a pinned software ele-
ment references another element also pinned on the same white-
board, a curved line is drawn between their pins to show this
connection i . These relation lines vary in thickness depending
on how many source code references they represent, e.g., when
showing relations between two folder pins.

Drawing FreehandDiagramswith Automated Conformance Checks.
Users can pick up a virtual pen and draw freely on the whiteboards
using a variety of colors i . Based on different drawing modes of
the virtual pen, our tool distinguishes user’s pen strokes into (1)
uninterpreted drawing (for icons, text, etc.), (2) outlines around
pins, and (3) arrows between outlines. Based on that, relation lines
between pins are colored according to the freehand drawn arrows
between outlines, providing users with a check on the conformance
between their hand drawn arrows and the ground truth references
in the subject system’s source code [10].

Recording Audio. To capture elaborate thoughts, users can pick
up a virtual microphone and create arbitrarily long audio record-
ings j . Once completed, they pin their audio recording to a white-
board using the same gesture as for pinning software elements k .

Capturing VR Screenshots. To capture a specific view on the visu-
alization, users can pick up a virtual camera and take VR screen-
shots l . These can then be pinned to a whiteboard as shown in m .
When tipping on a VR screenshot pinned to a whiteboard, users can
restore the visualization to the state of taking the picture, imple-
menting a form of temporal snapshsot in the exploration process.

ReadingNotes in Eclipse. To assist users in working in the source
code based on the insights gained during VR explorations, they can
access their whiteboard notes directly in Eclipse. For that purpose,
ISA extends the Eclipse UI with a view enabling users to inspect
whiteboards, zoom in and out, play audio recordings, and enlarge
screenshots n . Further, users can open files of pinned elements in
Eclipse by clicking on pins in the whiteboard view o .

2.2 Tool Architecture
Figure 2 provides a simplified overview of ISA’s core components
and their interconnections.

Model Server: Platform of Eclipse Plugins. ISA’s model server
is implemented as an extensible platform of Eclipse bundles. The
lower part of Figure 2 provides an overview of that platform.

Automated Model Generation. ISA’s overall model generation
process is handled by a core plugin which successively executes a
pipeline of three steps, each passing its results on to the next:

ICPC ’24, April 15–16, 2024, Lisbon, Portugal Adrian Hoff, Mircea Lungu, Christoph Seidl, and Michele Lanza

Legend Required Interface
Component / Plugin Provided Interface

TCP Connection
UDP Connection

Real-Time
Synchronization

Model ServerAutomated Model Generation

Static
Analysis

Archictect.
Reconstruct.

Vis. Model
Generation

Visualization Whiteboards Collaborators

Eclipse
Plugin
Platform

VR Clients

Network

Figure 2: Architectural overview of ISA. A platform of Eclipse
plugins provides an automated system analysis and a model server.
VR clients connect to it and display a collaborative visualization.

(1) analyzing Eclipse projects selected by a user and storing the
results in a model suitable for capturing the structure of an
object-oriented software system from folder to member level,

(2) (optional step) employing an architecture recovery procedure [8]
that replaces the folder-level structure in the results of Step 1,

(3) transforming the software model resulting from the previous
step into a visualization model as input for VR clients.
A concrete solution for a step, e.g., an analysis for Java source

code as Step 1, is implemented in form of an Eclipse bundle reg-
istering with the core plugin via an extension point. ISA’s model
generation platform can be extended with alternative solutions
for individual steps, e.g., support for analyzing an additional pro-
gramming language (Step 1) or an alternative mapping of software
elements to visual elements (Step 3), while integrating with pre-
existing solutions for other steps without further adaptions.

To further ease the extension of ISA’s model generation platform,
we define the structure of information passed between its steps via
meta models, using the Eclipse Modeling Framework (EMF).

Communication viaNetwork. To exchange information between
Eclipse server and VR clients, ISA uses two channels:

1. UDP Channel. The ISA server establishes a dedicated UDP
connection with each VR client for continuous sharing of position
and rotation data for users’ heads, hands, and interacted objects
such as whiteboards, class cylinders, or cameras. This system does
not implement additional measures to recover dropped network
packets, as any lost data is overridden by the subsequent successful
transmission’s updated information.

2. TCP Channel. For information exchange that is less time critical
but that requires reliable and ordered message delivery (e.g, show-
ing relations via the relationship graph or closing folder sphere),
the ISA model server provides an HTTP-based interface. Upon re-
ceiving events from a connected client, the server (1) verifies their
consistency with a log of all pre-existing events, (2) persists a new
version of the log with the inserted events, and (3) forwards the
new events in their respective order to all connected clients.

We use the Eclipse Modeling Framework (EMF) to define meta
models for the data structures in our TCP-based message exchange,
to automatically generate equivalent code from the meta models
in both Java (for use in Eclipse bundles) and C# (for use in the VR
visualization client).

VR Visualization Clients. ISA’s VR visualization client acts as
local realization of the synchronized visualization state maintained
by the ISA Eclipse server. That includes interactions carried out
directly by the user of an ISA VR client – these first go through the
model server and its verification before being sent back and then
being applied in the order consistent with potential other events
issued by collaborators in the meantime.

ISA’s VR visualization client is based on the SteamVR platform
and implemented in C# using the Unity 3D engine, making ISA’s
VR client compatible with all VR hardware supported by SteamVR.

3 CASE STUDYWITH PRACTITIONERS
We evaluated our tool in an exploratory case study with four soft-
ware engineering practitioners. Working in pairs, participants used
our tool to collaboratively explore an unfamiliar Java subject system.
After these sessions, we used a questionnaire to collect participants’
feedback on using VR for exploring an unfamiliar software system
and taking notes on findings. Further, we analyzed the whiteboards
created by both teams during their session and extracted all state-
ments about the subject system they have noted. We then relayed
these statements to the original developers of the subject system
to assess their correctness and relevance in a re-engineering con-
text. Below, we discuss general results of the study. More detailed
documents and raw data is accessible in an online appendix2.

Feedback from the subject system’s original developers show
that, while the relevance of participants’ statements was mixed with
some being vital for future work with the system’s source code and
others not concerning relevant aspects at all, the correctness of par-
ticipants’ statements was very high. Results from the analysis of the
VR sessions and post-questionnaire show that ISA provides good
support for an exploration on the level of architectural elements
(folders and classes). Regarding note taking, participants valued
the flexible nature of using freehand scribbling, recording audio,
and taking screenshots. At the same time, they pointed out that it
requires practice to fully utilize the immersive VR tool, especially
for handwriting on the VR whiteboards. Further, they mentioned
potential of an automated audio recording transcription feature.

4 CONCLUSION AND FUTUREWORK
We presented the collaborative VR software exploration tool Im-
mersive Software Archaeology (ISA). We described its usage from a
user’s points of view and provided an overview of its architecture.
Further, we reported on results from an exploratory case study with
four software engineering practitioners.

In future work, we plan to extend ISAwith support for automated
audio-to-text transcription. Further, we plan to conduct quantitative
studies involving larger samples of software engineering practition-
ers to investigate the tool’s effectiveness, e.g., comparing ISA with
traditional software exploration environments such as an IDE.

ACKNOWLEDGMENTS
Hoff and Seidl are supported by the DFF (Independent Research
Fund Denmark) project “Immersive Software Archaeology (ISA)”
(0136-00070B). Lanza is supported by the Swiss National Science
Foundation (SNSF) project “INSTINCT” (Project No. 190113).
2https://doi.org./10.6084/m9.figshare.24499726

https://doi.org./10.6084/m9.figshare.24499726

Immersive Software Archaeology: Collaborative Exploration and Note Taking in Virtual Reality ICPC ’24, April 15–16, 2024, Lisbon, Portugal

REFERENCES
[1] G Ann Campbell. 2018. Cognitive complexity: An overview and evaluation. In

Proceedings of the 2018 international conference on technical debt. 57–58.
[2] Stephan Diehl. 2007. Software visualization: visualizing the structure, behaviour,

and evolution of software. Springer Science & Business Media.
[3] S. Ducasse and D. Pollet. 2009. Software Architecture Reconstruction: A Process-

Oriented Taxonomy. IEEE Transactions on Software Engineering 35, 4 (July 2009),
573–591. https://doi.org/10.1109/TSE.2009.19

[4] Florian Fittkau, Alexander Krause, and Wilhelm Hasselbring. 2015. Exploring
software cities in virtual reality. In 2015 IEEE 3rd Working Conference on Software
Visualization (VISSOFT). IEEE, Bremen, Germany, 130–134. https://doi.org/10.
1109/VISSOFT.2015.7332423

[5] Dussan Freire-Pozo, Kevin Cespedes-Arancibia, Leonel Merino, Alison Fernandez-
Blanco, Andres Neyem, and Juan Pablo Sandoval Alcocer. 2023. DGT-AVisualizing
Code Dependencies in AR. In 2023 Working Conference on Software Visualization
(VISSOFT). IEEE.

[6] Denis Gračanin, Krešimir Matković, and Mohamed Eltoweissy. 2005. Software
visualization. Innovations in Systems and Software Engineering 1, 2 (Sept. 2005),
221–230. https://doi.org/10.1007/s11334-005-0019-8

[7] O. Greevy, M. Lanza, and C. Wysseier. 2005. Visualizing Feature Interaction in
3-D. In 3rd IEEE International Workshop on Visualizing Software for Understanding
and Analysis. IEEE, Budapest, Hungary, 1–6. https://doi.org/10.1109/VISSOF.
2005.1684317

[8] Adrian Hoff, Lea Gerling, and Christoph Seidl. 2022. Utilizing Software Archi-
tecture Recovery to Explore Large-Scale Software Systems in Virtual Reality. In
2022 Working Conference on Software Visualization (VISSOFT). IEEE, Limassol,
Cyprus, 119–130. https://doi.org/10.1109/VISSOFT55257.2022.00020

[9] Adrian Hoff, Michael Nieke, and Christoph Seidl. 2021. Towards immersive
software archaeology: regaining legacy systems’ design knowledge via interactive
exploration in virtual reality. In Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. ACM, Athens Greece, 1455–1458. https://doi.org/10.1145/
3468264.3473128

[10] Adrian Hoff, Christoph Seidl, Mircea Lungu, and Michele Lanza. 2023. Preparing
Software Re-Engineering via Freehand Sketches in Virtual Reality. In Proceedings
of the 39th IEEE International Conference on Software Maintenance and Evolution.
IEEE. https://www.inf.usi.ch/lanza/Downloads/Hoff2023b.pdf

[11] C. Knight and M. Munro. 2000. Virtual but visible software. In 2000 IEEE
Conference on Information Visualization. An International Conference on Com-
puter Visualization and Graphics. IEEE Comput. Soc, London, UK, 198–205.
https://doi.org/10.1109/IV.2000.859756

[12] Rainer Koschke and Marcel Steinbeck. 2021. SEE Your Clones With Your Team-
mates. In 2021 IEEE 15th International Workshop on Software Clones (IWSC). IEEE,
Luxembourg, 15–21. https://doi.org/10.1109/IWSC53727.2021.00009

[13] Alexander Krause-Glau, Marcel Bader, and Wilhelm Hasselbring. 2022. Collab-
orative Software Visualization for Program Comprehension. https://doi.org/10.
1109/VISSOFT55257.2022.00016 Pages: 86.

[14] M. Lanza and S. Ducasse. 2003. Polymetric views - A lightweight visual approach
to reverse engineering. IEEE Transactions on Software Engineering 29, 9 (Sept.
2003), 782–795. https://doi.org/10.1109/TSE.2003.1232284

[15] Mircea Lungu, Michele Lanza, and Oscar Nierstrasz. 2014. Evolutionary and col-
laborative software architecture recovery with Softwarenaut. Science of Computer
Programming 79 (Jan. 2014), 204–223. https://doi.org/10.1016/j.scico.2012.04.007

[16] Leonel Merino, Mohammad Ghafari, Craig Anslow, and Oscar Nierstrasz. 2017.
CityVR: Gameful Software Visualization. (2017), 5.

[17] Roberto Minelli and Michele Lanza. 2013. SAMOA – A Visual Software Ana-
lytics Platform for Mobile Applications. In 2013 IEEE International Conference
on Software Maintenance. 476–479. https://doi.org/10.1109/ICSM.2013.76 ISSN:
1063-6773.

[18] David Moreno-Lumbreras, Jesus M Gonzalez-Barahona, and Andrea Villaverde.
2021. BabiaXR: Virtual Reality software data visualizations for the Web. (2021).

[19] Harry Sneed and Chris Verhoef. 2019. Re-implementing a legacy system. Journal
of Systems and Software 155 (Sept. 2019), 162–184. https://doi.org/10.1016/j.jss.
2019.05.012

[20] Frank Steinbrückner and Claus Lewerentz. 2013. Understanding software evolu-
tion with software cities. Information Visualization 12, 2 (April 2013), 200–216.
https://doi.org/10.1177/1473871612438785

[21] Richard Wettel and Michele Lanza. 2008. CodeCity: 3D visualization of large-
scale software. In Companion of the 13th international conference on Software
engineering - ICSE Companion ’08. ACM Press, Leipzig, Germany, 921. https:
//doi.org/10.1145/1370175.1370188

[22] Richard Wettel, Michele Lanza, and Romain Robbes. 2011. Software systems as
cities: a controlled experiment. In Proceeding of the 33rd international conference
on Software engineering - ICSE ’11. ACM Press, Waikiki, Honolulu, HI, USA, 551.
https://doi.org/10.1145/1985793.1985868

[23] Sandra Yin and Julia Mccreary. 1992. Myths and realities: Defining re-engineering
for a large organization. In NASA. Goddard Space Flight Center, Proceedings of the

Seventeenth Annual Software Engineering Workshop.
[24] P. Young and M. Munro. 1998. Visualising software in virtual reality. In Pro-

ceedings. 6th International Workshop on Program Comprehension. IWPC’98 (Cat.
No.98TB100242). IEEE Comput. Soc, Ischia, Italy, 19–26. https://doi.org/10.1109/
WPC.1998.693276

https://doi.org/10.1109/TSE.2009.19
https://doi.org/10.1109/VISSOFT.2015.7332423
https://doi.org/10.1109/VISSOFT.2015.7332423
https://doi.org/10.1007/s11334-005-0019-8
https://doi.org/10.1109/VISSOF.2005.1684317
https://doi.org/10.1109/VISSOF.2005.1684317
https://doi.org/10.1109/VISSOFT55257.2022.00020
https://doi.org/10.1145/3468264.3473128
https://doi.org/10.1145/3468264.3473128
https://www.inf.usi.ch/lanza/Downloads/Hoff2023b.pdf
https://doi.org/10.1109/IV.2000.859756
https://doi.org/10.1109/IWSC53727.2021.00009
https://doi.org/10.1109/VISSOFT55257.2022.00016
https://doi.org/10.1109/VISSOFT55257.2022.00016
https://doi.org/10.1109/TSE.2003.1232284
https://doi.org/10.1016/j.scico.2012.04.007
https://doi.org/10.1109/ICSM.2013.76
https://doi.org/10.1016/j.jss.2019.05.012
https://doi.org/10.1016/j.jss.2019.05.012
https://doi.org/10.1177/1473871612438785
https://doi.org/10.1145/1370175.1370188
https://doi.org/10.1145/1370175.1370188
https://doi.org/10.1145/1985793.1985868
https://doi.org/10.1109/WPC.1998.693276
https://doi.org/10.1109/WPC.1998.693276

	Abstract
	1 Introduction and Related Work
	2 Collaborative Software Exploration in VR
	2.1 Usage from a User's Point of view
	2.2 Tool Architecture

	3 Case Study with Practitioners
	4 Conclusion and Future Work
	Acknowledgments
	References

